6 research outputs found

    Optimization of star research algorithm for esmo star tracker

    Get PDF
    This paper explains in detail the design and the development of a software research star algorithm, embedded on a star tracker, by the ISAE/SUPAERO team. This research algorithm is inspired by musical techniques. This work will be carried out as part of the ESMO (European Student Moon Orbiter) project by different teams of students and professors from ISAE/SUPAERO (Institut Supe ́rieur de l’Ae ́ronautique et de l’Espace). Till today, the system engineering studies have been completed and the work that will be presented will concern the algorithmic and the embedded software development. The physical architecture of the sensor relies on APS 750 developed by the CIMI laboratory of ISAE/SUPAERO. First, a star research algorithm based on the image acquired in lost-in-space mode (one of the star tracker opera- tional modes) will be presented; it is inspired by techniques of musical recognition with the help of the correlation of digital signature (hash) with those stored in databases. The musical recognition principle is based on finger- printing, i.e. the extraction of points of interest in the studied signal. In the musical context, the signal spectrogram is used to identify these points. Applying this technique in image processing domain requires an equivalent tool to spectrogram. Those points of interest create a hash and are used to efficiently search within the database pre- viously sorted in order to be compared. The main goals of this research algorithm are to minimise the number of steps in the computations in order to deliver information at a higher frequency and to increase the computation robustness against the different possible disturbances

    Observational and Modeling Analysis of Land–Atmopshere Coupling over Adjacent Irrigated and Rainfed Cropland during the GRAINEX Field Campaign

    Get PDF
    The Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 to investigate Land-Atmosphere (L-A) coupling just prior to and through the growing season across adjacent, but distinctly unique, soil moisture regimes (contrasting irrigated and rainfed fields). GRAINEX was uniquely designed for the development and analysis of an extensive observational dataset for comprehensive process studies of L-A coupling, by focusing on irrigated and rainfed croplands in a ~100 x 100 km domain in southeastern Nebraska. Observation platforms included multiple NCAR EOL Integrated Surface Flux Systems and Integrated Sounding Systems, NCAR CSWR Doppler Radar on Wheels, 1200 radiosonde balloon launches from 5 sites, the NASA GREX airborne L-Band radiometer, and 75 University of Alabama-Huntsville Environmental Monitoring Economic Monitoring Sensor Hubs (EMESH mesonet stations). An integrated observational and modeling approach to advance knowledge of L-A coupling processes and precipitation impacts in regions of heterogeneous soil moisture will be presented. Specifically, through observation of land surface states, surface fluxes, near surface meteorology, and properties of the atmospheric column, an examination of the diurnal planetary boundary layer evolving characteristics will be presented. Results from a hierarchy of modeling platforms (e.g. single column, large-eddy, and mesoscale simulations) will also be presented to complement the observational findings. The modeling effort will generate high spatiotemporal resolution datasets to: 1) generate a multi-physics ensemble to test the robustness and potentially advance physical parameterizations in high resolution weather and climate models, 2) comparison of prescribed forcing from observations and those from offline land surface model simulations and high resolution operational analyses, 3) determine the ability of model simulations to reproduce observed boundary layer evolution, with particular attention to the processes that compose the L-A coupling chain and metrics (e.g. mixing ratio diagrams), and 4) in combination with observations, isolate the impacts of soil moisture heterogeneity on planetary boundary layer characteristics, cloud development, precipitation, mesoscale circulation patters and boundary layer development. Initial results from the observational and modeling analysis will be presented

    A Model-Based Assessment of Potential Impacts of Man-Made Reservoirs on Precipitation

    Get PDF
    Land-use land-cover change (LULCC) plays an important role in weather and climate systems. Human modifications of land cover include building reservoirs and thus creating artificial lakes for multipurpose use. In this research, the authors have completed a Weather Research and Forecasting (WRF) Model–based assessment of impacts of two large parallel lakes on precipitation. This area is located in the western part of the states of Kentucky and Tennessee and known as the Land between the Lakes (LBL). To determine the impacts, this study has replaced the lakes with grass, deciduous forests, and bare soil and conducted model simulations for three precipitation events of different magnitudes. The analysis suggests that precipitation increased in some cases and reduced in others. One of the key impacts of LULCC in the LBL area is the relocation of precipitation cells and also the timing of precipitation. Local precipitation amounts increased or decreased with these relocations. In summary, establishment of lakes or replacement of lakes with alternate land cover may modify local precipitation in the LBL area

    A Model-Based Assessment of Potential Impacts of Man-Made Reservoirs on Precipitation

    No full text
    Land-use land-cover change (LULCC) plays an important role in weather and climate systems. Human modifications of land cover include building reservoirs and thus creating artificial lakes for multipurpose use. In this research, the authors have completed a Weather Research and Forecasting (WRF) Model–based assessment of impacts of two large parallel lakes on precipitation. This area is located in the western part of the states of Kentucky and Tennessee and known as the Land between the Lakes (LBL). To determine the impacts, this study has replaced the lakes with grass, deciduous forests, and bare soil and conducted model simulations for three precipitation events of different magnitudes. The analysis suggests that precipitation increased in some cases and reduced in others. One of the key impacts of LULCC in the LBL area is the relocation of precipitation cells and also the timing of precipitation. Local precipitation amounts increased or decreased with these relocations. In summary, establishment of lakes or replacement of lakes with alternate land cover may modify local precipitation in the LBL area

    The Impacts of Irrigated and Rainfed Agriculture on Near-Surface Atmosphere: Preliminary Results from GRAINEX

    Get PDF
    Land use/land cover change (LULCC) has long been viewed as a contributing source of climate change. Modification of natural prairie grasslands to irrigated and rainfed agriculture has proven to have significant impacts on regional weather and climate variables including temperature, precipitation and energy fluxes. These impacts can be visible in various parts of the Great Plains. In this presentation, we have analyzed energy flux and soil moisture data collected during the Great Plains Irrigation Experiment (GRAINEX) in the 2018 growing season. The GRAINEX field campaign includes 12 in-situ integrated surface flux systems; three mobile radar units that also conducted radiosonde balloon launches; 74 temporary weather stations; and two integrated sounding systems that launched radiosonde balloons. Balloon launches were conducted every two hours from sunrise to sunset accumulating to 40 radiosonde balloon launches every day. The data were collected during two intensive observation periods (IOPs) in early June (May 30-June 13, 2018) and late July (July 16-July 30, 2018). Flux and surface meteorological observations were continuous from May through July. Impacts of four different land covers, including, irrigated soybean, irrigated corn, non-irrigated soybean, and non-irrigated corn were quantified by analyses of observed data. The data assessed for this study included sensible and latent heat energy, and equivalent temperature (moist enthalpy). In addition, soil moisture and temperature data were also collected and used to determine how root zone soil moisture affected atmospheric boundary layer variables

    The Great Plains Irrigation Experiment (GRAINEX)

    Get PDF
    Extensive expansion in irrigated agriculture has taken place over the last half century. Due to increased irrigation and resultant land use land cover change, the central United States has seen a decrease in temperature and changes in precipitation during the second half of 20th century. To investigate the impacts of widespread commencement of irrigation at the beginning of the growing season and continued irrigation throughout the summer on local and regional weather, the Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in southeastern Nebraska. GRAINEX consisted of two, 15-day intensive observation periods. Observational platforms from multiple agencies and universities were deployed to investigate the role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and local precipitation. This article provides an overview of the data collected and an analysis of the role of irrigation in land-atmosphere interactions on time scales from the seasonal to the diurnal. The analysis shows that a clear irrigation signal was apparent during the peak growing season in mid- July. This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature and humidity, as well as boundary layer growth and decay
    corecore